生物化學與分子生物學核心(3)
來源:互聯(lián)網(wǎng)
2010-10-03 00:00
第七章?生物氧化?
一、生物氧化的概念和特點:?
物質(zhì)在生物體內(nèi)氧化分解并釋放出能量的過程稱為生物氧化。與體外燃燒一樣,生物氧化也是一個消耗O2,生成CO2和H2O,并釋放出大量能量的過程。但與體外燃燒不同的是,生物氧化過程是在37℃,近于中性的含水環(huán)境中,由酶催化進行的;反應(yīng)逐步釋放出能量,相當一部分能量以高能磷酸酯鍵的形式儲存起來。?
二、線粒體氧化呼吸鏈:?
在線粒體中,由若干遞氫體或遞電子體按一定順序排列組成的,與細胞呼吸過程有關(guān)的鏈式反應(yīng)體系稱為呼吸鏈。這些遞氫體或遞電子體往往以復合體的形式存在于線粒體內(nèi)膜上。主要的復合體有:?
1.?復合體Ⅰ(NADH-泛醌還原酶):由一分子NADH還原酶(FMN),兩分子鐵硫蛋白(Fe-S)和一分子CoQ組成,其作用是將(NADH+H+)傳遞給CoQ。?
鐵硫蛋白分子中含有非血紅素鐵和對酸不穩(wěn)定的硫。其分子中的鐵離子與硫原子構(gòu)成一種特殊的正四面體結(jié)構(gòu),稱為鐵硫中心或鐵硫簇,鐵硫蛋白是單電子傳遞體。泛醌(CoQ)是存在于線粒體內(nèi)膜上的一種脂溶性醌類化合物。分子中含對苯醌結(jié)構(gòu),可接受二個氫原子而轉(zhuǎn)變成對苯二酚結(jié)構(gòu),是一種雙遞氫體。?
2.?復合體Ⅱ(琥珀酸-泛醌還原酶):由一分子琥珀酸脫氫酶(FAD),兩分子鐵硫蛋白和兩分子Cytb560組成,其作用是將FADH2傳遞給CoQ。?
細胞色素類:這是一類以鐵卟啉為輔基的蛋白質(zhì),為單電子傳遞體。細胞色素可存在于線粒體內(nèi)膜,也可存在于微粒體。存在于線粒體內(nèi)膜的細胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒體的細胞色素有CytP450和Cytb5。?
3.?復合體Ⅲ(泛醌-細胞色素c還原酶):由兩分子Cytb(分別為Cytb562和Cytb566),一分子Cytc1和一分子鐵硫蛋白組成,其作用是將電子由泛醌傳遞給Cytc。?
4.?復合體Ⅳ(細胞色素c氧化酶):由一分子Cyta和一分子Cyta3組成,含兩個銅離子,可直接將電子傳遞給氧,故Cytaa3又稱為細胞色素c氧化酶,其作用是將電子由Cytc傳遞給氧。?
三、呼吸鏈成分的排列順序:?
由上述遞氫體或遞電子體組成了NADH氧化呼吸鏈和琥珀酸氧化呼吸鏈兩條呼吸鏈。?
1.NADH氧化呼吸鏈:其遞氫體或遞電子體的排列順序為:NAD+?→[?FMN?(Fe-S)]→CoQ→b(Fe-S)→?c1?→?c?→aa3?→1/2O2?。丙酮酸、α-酮戊二酸、異檸檬酸、蘋果酸、β-羥丁酸、β-羥脂酰CoA和谷氨酸脫氫后經(jīng)此呼吸鏈遞氫。?
2.琥珀酸氧化呼吸鏈:其遞氫體或遞電子體的排列順序為:?[?FAD?(Fe-S)]→CoQ→b(Fe-S)→?c1?→?c?→aa3?→1/2O2?。琥珀酸、3-磷酸甘油(線粒體)和脂酰CoA脫氫后經(jīng)此呼吸鏈遞氫。?
四、生物體內(nèi)能量生成的方式:?
1.氧化磷酸化:在線粒體中,底物分子脫下的氫原子經(jīng)遞氫體系傳遞給氧,在此過程中釋放能量使ADP磷酸化生成ATP,這種能量的生成方式就稱為氧化磷酸化。?
2.底物水平磷酸化:直接將底物分子中的高能鍵轉(zhuǎn)變?yōu)锳TP分子中的末端高能磷酸鍵的過程稱為底物水平磷酸化。?
五、氧化磷酸化的偶聯(lián)部位:?
每消耗一摩爾氧原子所消耗的無機磷的摩爾數(shù)稱為P/O比值。當?shù)孜锩摎湟訬AD+為受氫體時,P/O比值約為3;而當?shù)孜锩摎湟訤AD為受氫體時,P/O比值約為2。故NADH氧化呼吸鏈有三個生成ATP的偶聯(lián)部位,而琥珀酸氧化呼吸鏈只有兩個生成ATP的偶聯(lián)部位。?
六、氧化磷酸化的偶聯(lián)機制:?
目前公認的機制是1961年由Mitchell提出的化學滲透學說。這一學說認為氧化呼吸鏈存在于線粒體內(nèi)膜上,當氧化反應(yīng)進行時,H+通過氫泵作用(氧化還原袢)被排斥到線粒體內(nèi)膜外側(cè)(膜間腔),從而形成跨膜pH梯度和跨膜電位差。這種形式的能量,可以被存在于線粒體內(nèi)膜上的ATP合酶利用,生成高能磷酸基團,并與ADP結(jié)合而合成ATP。?
在電鏡下,ATP合酶分為三個部分,即頭部,柄部和基底部。但如用生化技術(shù)進行分離,則只能得到F0(基底部+部分柄部)和F1(頭部+部分柄部)兩部分。ATP合酶的中心存在質(zhì)子通道,當質(zhì)子通過這一通道進入線粒體基質(zhì)時,其能量被頭部的ATP合酶催化活性中心利用以合成ATP。?
七、氧化磷酸化的影響因素:?
1.ATP/ADP比值:ATP/ADP比值是調(diào)節(jié)氧化磷酸化速度的重要因素。ATP/ADP比值下降,可致氧化磷酸化速度加快;反之,當ATP/ADP比值升高時,則氧化磷酸化速度減慢。?
2.甲狀腺激素:甲狀腺激素可以激活細胞膜上的Na+,K+-ATP酶,使ATP水解增加,因而使ATP/ADP比值下降,氧化磷酸化速度加快。?
3.藥物和毒物:?
⑴呼吸鏈的抑制劑:能夠抑制呼吸鏈遞氫或遞電子過程的藥物或毒物稱為呼吸鏈的抑制劑。能夠抑制第一位點的有異戊巴比妥、粉蝶霉素A、魚藤酮等;能夠抑制第二位點的有抗霉素A和二巰基丙醇;能夠抑制第三位點的有CO、H2S和CN-、N3-。其中,CN-和N3-主要抑制氧化型Cytaa3-Fe3+,而CO和H2S主要抑制還原型Cytaa3-Fe2+。?
⑵解偶聯(lián)劑:不抑制呼吸鏈的遞氫或遞電子過程,但能使氧化產(chǎn)生的能量不能用于ADP的磷酸化的試劑稱為解偶聯(lián)劑。其機理是增大了線粒體內(nèi)膜對H+的通透性,使H+的跨膜梯度消除,從而使氧化過程釋放的能量不能用于ATP的合成反應(yīng)。主要的解偶聯(lián)劑有2,4-二硝基酚。?
⑶氧化磷酸化的抑制劑:對電子傳遞和ADP磷酸化均有抑制作用的藥物和毒物稱為氧化磷酸化的抑制劑,如寡霉素。?
八、高能磷酸鍵的類型:?
生物化學中常將水解時釋放的能量>20kJ/mol的磷酸鍵稱為高能磷酸鍵,主要有以下幾種類型:?
1.磷酸酐鍵:包括各種多磷酸核苷類化合物,如ADP,ATP等。?
2.混合酐鍵:由磷酸與羧酸脫水后形成的酐鍵,主要有1,3-二磷酸甘油酸等化合物。?
3.烯醇磷酸鍵:見于磷酸烯醇式丙酮酸中。?
4.磷酸胍鍵:見于磷酸肌酸中,是肌肉和腦組織中能量的貯存形式。磷酸肌酸中的高能磷酸鍵不能被直接利用,而必須先將其高能磷酸鍵轉(zhuǎn)移給ATP,才能供生理活動之需。這一反應(yīng)過程由肌酸磷酸激酶(CPK)催化完成。?
九、線粒體外NADH的穿梭:?
胞液中的3-磷酸甘油醛或乳酸脫氫,均可產(chǎn)生NADH。這些NADH可經(jīng)穿梭系統(tǒng)而進入線粒體氧化磷酸化,產(chǎn)生H2O和ATP。?
1.磷酸甘油穿梭系統(tǒng):這一系統(tǒng)以3-磷酸甘油和磷酸二羥丙酮為載體,在兩種不同的α-磷酸甘油脫氫酶的催化下,將胞液中NADH的氫原子帶入線粒體中,交給FAD,再沿琥珀酸氧化呼吸鏈進行氧化磷酸化。因此,如NADH通過此穿梭系統(tǒng)帶一對氫原子進入線粒體,則只得到2分子ATP。?
2.蘋果酸穿梭系統(tǒng):此系統(tǒng)以蘋果酸和天冬氨酸為載體,在蘋果酸脫氫酶和谷草轉(zhuǎn)氨酶的催化下。將胞液中NADH的氫原子帶入線粒體交給NAD+,再沿NADH氧化呼吸鏈進行氧化磷酸化。因此,經(jīng)此穿梭系統(tǒng)帶入一對氫原子可生成3分子ATP。
第八章?氨基酸代謝?
一、蛋白質(zhì)的營養(yǎng)作用:?
1.蛋白質(zhì)的生理功能:主要有:①是構(gòu)成組織細胞的重要成分;②參與組織細胞的更新和修補;③參與物質(zhì)代謝及生理功能的調(diào)控;④氧化供能;⑤其他功能:如轉(zhuǎn)運、凝血、免疫、記憶、識別等。?
2.氮平衡:體內(nèi)蛋白質(zhì)的合成與分解處于動態(tài)平衡中,故每日氮的攝入量與排出量也維持著動態(tài)平衡,這種動態(tài)平衡就稱為氮平衡。氮平衡有以下幾種情況:?
⑴氮總平衡:每日攝入氮量與排出氮量大致相等,表示體內(nèi)蛋白質(zhì)的合成量與分解量大致相等,稱為氮總平衡。此種情況見于正常成人。?
⑵氮正平衡:每日攝入氮量大于排出氮量,表明體內(nèi)蛋白質(zhì)的合成量大于分解量,稱為氮正平衡。此種情況見于兒童、孕婦、病后恢復期。?
⑶氮負平衡:每日攝入氮量小于排出氮量,表明體內(nèi)蛋白質(zhì)的合成量小于分解量,稱為氮負平衡。此種情況見于消耗性疾病患者(結(jié)核、腫瘤),饑餓者。?
3.必需氨基酸與非必需氨基酸:體內(nèi)不能合成,必須由食物蛋白質(zhì)供給的氨基酸稱為必需氨基酸。反之,體內(nèi)能夠自行合成,不必由食物供給的氨基酸就稱為非必需氨基酸。?
必需氨基酸一共有八種:賴氨酸(Lys)、色氨酸(Trp)、苯丙氨酸(Phe)、蛋氨酸(Met)、蘇氨酸(Thr)、亮氨酸(Leu)、異亮氨酸(Ile)、纈氨酸(Val)。酪氨酸和半胱氨酸必需以必需氨基酸為原料來合成,故被稱為半必需氨基酸。?
4.蛋白質(zhì)的營養(yǎng)價值及互補作用:蛋白質(zhì)營養(yǎng)價值高低的決定因素有:①?必需氨基酸的含量;②?必需氨基酸的種類;③?必需氨基酸的比例,即具有與人體需求相符的氨基酸組成。將幾種營養(yǎng)價值較低的食物蛋白質(zhì)混合后食用,以提高其營養(yǎng)價值的作用稱為食物蛋白質(zhì)的互補作用。?
二、蛋白質(zhì)的消化、吸收與腐敗?
1.蛋白質(zhì)的消化:胃蛋白酶水解食物蛋白質(zhì)為多肽,再在小腸中完全水解為氨基酸。?
2.氨基酸的吸收:主要在小腸進行,是一種主動轉(zhuǎn)運過程,需由特殊載體攜帶。除此之外,也可經(jīng)γ-谷氨酰循環(huán)進行。?
3.蛋白質(zhì)在腸中的腐?。褐饕诖竽c中進行,是細菌對蛋白質(zhì)及其消化產(chǎn)物的分解作用,可產(chǎn)生有毒物質(zhì)。?
三、氨基酸的脫氨基作用:?
氨基酸主要通過三種方式脫氨基,即氧化脫氨基,聯(lián)合脫氨基和非氧化脫氨基。?
1.氧化脫氨基:反應(yīng)過程包括脫氫和水解兩步,反應(yīng)主要由L-氨基酸氧化酶和谷氨酸脫氫酶所催化。L-氨基酸氧化酶是一種需氧脫氫酶,該酶在人體內(nèi)作用不大。谷氨酸脫氫酶是一種不需氧脫氫酶,以NAD+或NADP+為輔酶。該酶作用較大,屬于變構(gòu)酶,其活性受ATP,GTP的抑制,受ADP,GDP的激活。?
2.轉(zhuǎn)氨基作用:由轉(zhuǎn)氨酶催化,將α-氨基酸的氨基轉(zhuǎn)移到α-酮酸酮基的位置上,生成相應(yīng)的α-氨基酸,而原來的α-氨基酸則轉(zhuǎn)變?yōu)橄鄳?yīng)的α-酮酸。轉(zhuǎn)氨酶以磷酸吡哆醛(胺)為輔酶。轉(zhuǎn)氨基作用可以在各種氨基酸與α-酮酸之間普遍進行。除Gly,Lys,Thr,Pro外,均可參加轉(zhuǎn)氨基作用。較為重要的轉(zhuǎn)氨酶有:?
⑴?丙氨酸氨基轉(zhuǎn)移酶(ALT),又稱為谷丙轉(zhuǎn)氨酶(GPT)。催化丙氨酸與α-酮戊二酸之間的氨基移換反應(yīng),為可逆反應(yīng)。該酶在肝臟中活性較高,在肝臟疾病時,可引起血清中ALT活性明顯升高。?
⑵?天冬氨酸氨基轉(zhuǎn)移酶(AST),又稱為谷草轉(zhuǎn)氨酶(GOT)。催化天冬氨酸與α-酮戊二酸之間的氨基移換反應(yīng),為可逆反應(yīng)。該酶在心肌中活性較高,故在心肌疾患時,血清中AST活性明顯升高。?
3.聯(lián)合脫氨基作用:轉(zhuǎn)氨基作用與氧化脫氨基作用聯(lián)合進行,從而使氨基酸脫去氨基并氧化為α-酮酸的過程,稱為聯(lián)合脫氨基作用。可在大多數(shù)組織細胞中進行,是體內(nèi)主要的脫氨基的方式。?
4.嘌呤核苷酸循環(huán)(PNC):這是存在于骨骼肌和心肌中的一種特殊的聯(lián)合脫氨基作用方式。在骨骼肌和心肌中,腺苷酸脫氨酶的活性較高,該酶可催化AMP脫氨基,此反應(yīng)與轉(zhuǎn)氨基反應(yīng)相聯(lián)系,即構(gòu)成嘌呤核苷酸循環(huán)的脫氨基作用。?
四、α-酮酸的代謝:?
1.再氨基化為氨基酸。?
2.轉(zhuǎn)變?yōu)樘腔蛑耗承┌被崦摪被笊商钱惿緩降闹虚g代謝物,故可經(jīng)糖異生途徑生成葡萄糖,這些氨基酸稱為生糖氨基酸。個別氨基酸如Leu,Lys,經(jīng)代謝后只能生成乙酰CoA或乙酰乙酰CoA,再轉(zhuǎn)變?yōu)橹蛲w,故稱為生酮氨基酸。而Phe,Tyr,Ile,Thr,Trp經(jīng)分解后的產(chǎn)物一部分可生成葡萄糖,另一部分則生成乙酰CoA,故稱為生糖兼生酮氨基酸。?
3.氧化供能:進入三羧酸循環(huán)徹底氧化分解供能。?
五、氨的代謝:?
1.血氨的來源與去路:?
⑴血氨的來源:①由腸道吸收;②氨基酸脫氨基;③氨基酸的酰胺基水解;④其他含氮物的分解。?
⑵血氨的去路:①在肝臟轉(zhuǎn)變?yōu)槟蛩兀虎诤铣砂被?;③合成其他含氮物;④合成天冬酰胺和谷氨酰胺;⑤直接排出?
2.氨在血中的轉(zhuǎn)運:氨在血液循環(huán)中的轉(zhuǎn)運,需以無毒的形式進行,如生成丙氨酸或谷氨酰胺等,將氨轉(zhuǎn)運至肝臟或腎臟進行代謝。?
⑴丙氨酸-葡萄糖循環(huán):肌肉中的氨基酸將氨基轉(zhuǎn)給丙酮酸生成丙氨酸,后者經(jīng)血液循環(huán)轉(zhuǎn)運至肝臟再脫氨基,生成的丙酮酸經(jīng)糖異生轉(zhuǎn)變?yōu)槠咸烟呛笤俳?jīng)血液循環(huán)轉(zhuǎn)運至肌肉重新分解產(chǎn)生丙酮酸,這一循環(huán)過程就稱為丙氨酸-葡萄糖循環(huán)。?
⑵谷氨酰胺的運氨作用:肝外組織,如腦、骨骼肌、心肌在谷氨酰胺合成酶的催化下,合成谷氨酰胺,以谷氨酰胺的形式將氨基經(jīng)血液循環(huán)帶到肝臟,再由谷氨酰胺酶將其分解,產(chǎn)生的氨即可用于合成尿素。因此,谷氨酰胺對氨具有運輸、貯存和解毒作用。?
3.鳥氨酸循環(huán)與尿素的合成:體內(nèi)氨的主要代謝去路是用于合成尿素。合成尿素的主要器官是肝臟,但在腎及腦中也可少量合成。尿素合成是經(jīng)鳥氨酸循環(huán)的反應(yīng)過程來完成,催化這些反應(yīng)的酶存在于胞液和線粒體中。其主要反應(yīng)過程如下:NH3+CO2+2ATP?→氨基甲酰磷酸→胍氨酸→精氨酸代琥珀酸→精氨酸→尿素+鳥氨酸。?
尿素合成的特點:①合成主要在肝臟的線粒體和胞液中進行;②合成一分子尿素需消耗四分子ATP;③精氨酸代琥珀酸合成酶是尿素合成的關(guān)鍵酶;④尿素分子中的兩個氮原子,一個來源于NH3,一個來源于天冬氨酸。?
六、氨基酸的脫羧基作用:?
由氨基酸脫羧酶催化,輔酶為磷酸吡哆醛,產(chǎn)物為CO2和胺。?
1.γ-氨基丁酸的生成:γ-氨基丁酸(GABA)是一種重要的神經(jīng)遞質(zhì),由L-谷氨酸脫羧而產(chǎn)生。反應(yīng)由L-谷氨酸脫羧酶催化,在腦及腎中活性很高。?
2.5-羥色胺的生成:5-羥色胺(5-HT)也是一種重要的神經(jīng)遞質(zhì),且具有強烈的縮血管作用,其合成原料是色氨酸。合成過程為:色氨酸→5羥色氨酸→5-羥色胺。?
3.組胺的生成:組胺由組氨酸脫羧產(chǎn)生,具有促進平滑肌收縮,促進胃酸分泌和強烈的舒血管作用。?
4.多胺的生成:精脒和精胺均屬于多胺,它們與細胞生長繁殖的調(diào)節(jié)有關(guān)。合成的原料為鳥氨酸,關(guān)鍵酶是鳥氨酸脫羧酶。?
七、一碳單位的代謝:?
一碳單位是指只含一個碳原子的有機基團,這些基團通常由其載體攜帶參加代謝反應(yīng)。常見的一碳單位有甲基(-CH3)、亞甲基或甲烯基(-CH2-)、次甲基或甲炔基(=CH-)、甲?;?CHO)、亞氨甲基(-CH=NH)、羥甲基(-CH2OH)等。?
一碳單位通常由其載體攜帶,常見的載體有四氫葉酸(FH4)和S-腺苷同型半胱氨酸,有時也可為VitB12。?
常見的一碳單位的四氫葉酸衍生物有:①N10-甲酰四氫葉酸(N10-CHO?FH4);②N5-亞氨甲基四氫葉酸(N5-CH=NH?FH4);③N5,N10-亞甲基四氫葉酸?(N5,N10-CH2-FH4);④N5,N10-次甲基四氫葉酸?(N5,N10=CH-FH4);⑤N5-甲基四氫葉酸(N5-CH3?FH4)。?
蘇氨酸、絲氨酸、甘氨酸和色氨酸代謝降解后可生成N10-甲酰四氫葉酸,后者可用于嘌呤C2原子的合成;蘇氨酸、絲氨酸、甘氨酸和組氨酸代謝降解后可生成N5,N10-次甲基四氫葉酸,后者可用于嘌呤C8原子的合成;絲氨酸代謝降解后可生成N5,N10-亞甲基四氫葉酸,后者可用于胸腺嘧啶甲基的合成。?
八、S-腺苷蛋氨酸循環(huán):?
蛋氨酸是體內(nèi)合成許多重要化合物,如腎上腺素、膽堿、肌酸和核酸等的甲基供體。其活性形式為S-腺苷蛋氨酸(SAM)。SAM也是一種一碳單位衍生物,其載體可認為是S-腺苷同型半胱氨酸,攜帶的一碳單位是甲基。?
從蛋氨酸形成的S-腺苷蛋氨酸,在提供甲基以后轉(zhuǎn)變?yōu)橥桶腚装彼?,然后再反方向重新合成蛋氨酸,這一循環(huán)反應(yīng)過程稱為S-腺苷蛋氨酸循環(huán)或活性甲基循環(huán)。?
九、芳香族氨基酸的代謝:?
在神經(jīng)組織細胞中的主要代謝過程為:苯丙氨酸→酪氨酸→多巴→多巴胺→去甲腎上腺素→腎上腺素。多巴胺、去甲腎上腺素和腎上腺素統(tǒng)稱兒茶酚胺。在黑色素細胞中,多巴可轉(zhuǎn)變?yōu)楹谏亍1奖彼崃u化酶遺傳性缺陷可致苯丙酮酸尿癥,酪氨酸酶遺傳性缺陷可致白化病。
一、生物氧化的概念和特點:?
物質(zhì)在生物體內(nèi)氧化分解并釋放出能量的過程稱為生物氧化。與體外燃燒一樣,生物氧化也是一個消耗O2,生成CO2和H2O,并釋放出大量能量的過程。但與體外燃燒不同的是,生物氧化過程是在37℃,近于中性的含水環(huán)境中,由酶催化進行的;反應(yīng)逐步釋放出能量,相當一部分能量以高能磷酸酯鍵的形式儲存起來。?
二、線粒體氧化呼吸鏈:?
在線粒體中,由若干遞氫體或遞電子體按一定順序排列組成的,與細胞呼吸過程有關(guān)的鏈式反應(yīng)體系稱為呼吸鏈。這些遞氫體或遞電子體往往以復合體的形式存在于線粒體內(nèi)膜上。主要的復合體有:?
1.?復合體Ⅰ(NADH-泛醌還原酶):由一分子NADH還原酶(FMN),兩分子鐵硫蛋白(Fe-S)和一分子CoQ組成,其作用是將(NADH+H+)傳遞給CoQ。?
鐵硫蛋白分子中含有非血紅素鐵和對酸不穩(wěn)定的硫。其分子中的鐵離子與硫原子構(gòu)成一種特殊的正四面體結(jié)構(gòu),稱為鐵硫中心或鐵硫簇,鐵硫蛋白是單電子傳遞體。泛醌(CoQ)是存在于線粒體內(nèi)膜上的一種脂溶性醌類化合物。分子中含對苯醌結(jié)構(gòu),可接受二個氫原子而轉(zhuǎn)變成對苯二酚結(jié)構(gòu),是一種雙遞氫體。?
2.?復合體Ⅱ(琥珀酸-泛醌還原酶):由一分子琥珀酸脫氫酶(FAD),兩分子鐵硫蛋白和兩分子Cytb560組成,其作用是將FADH2傳遞給CoQ。?
細胞色素類:這是一類以鐵卟啉為輔基的蛋白質(zhì),為單電子傳遞體。細胞色素可存在于線粒體內(nèi)膜,也可存在于微粒體。存在于線粒體內(nèi)膜的細胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒體的細胞色素有CytP450和Cytb5。?
3.?復合體Ⅲ(泛醌-細胞色素c還原酶):由兩分子Cytb(分別為Cytb562和Cytb566),一分子Cytc1和一分子鐵硫蛋白組成,其作用是將電子由泛醌傳遞給Cytc。?
4.?復合體Ⅳ(細胞色素c氧化酶):由一分子Cyta和一分子Cyta3組成,含兩個銅離子,可直接將電子傳遞給氧,故Cytaa3又稱為細胞色素c氧化酶,其作用是將電子由Cytc傳遞給氧。?
三、呼吸鏈成分的排列順序:?
由上述遞氫體或遞電子體組成了NADH氧化呼吸鏈和琥珀酸氧化呼吸鏈兩條呼吸鏈。?
1.NADH氧化呼吸鏈:其遞氫體或遞電子體的排列順序為:NAD+?→[?FMN?(Fe-S)]→CoQ→b(Fe-S)→?c1?→?c?→aa3?→1/2O2?。丙酮酸、α-酮戊二酸、異檸檬酸、蘋果酸、β-羥丁酸、β-羥脂酰CoA和谷氨酸脫氫后經(jīng)此呼吸鏈遞氫。?
2.琥珀酸氧化呼吸鏈:其遞氫體或遞電子體的排列順序為:?[?FAD?(Fe-S)]→CoQ→b(Fe-S)→?c1?→?c?→aa3?→1/2O2?。琥珀酸、3-磷酸甘油(線粒體)和脂酰CoA脫氫后經(jīng)此呼吸鏈遞氫。?
四、生物體內(nèi)能量生成的方式:?
1.氧化磷酸化:在線粒體中,底物分子脫下的氫原子經(jīng)遞氫體系傳遞給氧,在此過程中釋放能量使ADP磷酸化生成ATP,這種能量的生成方式就稱為氧化磷酸化。?
2.底物水平磷酸化:直接將底物分子中的高能鍵轉(zhuǎn)變?yōu)锳TP分子中的末端高能磷酸鍵的過程稱為底物水平磷酸化。?
五、氧化磷酸化的偶聯(lián)部位:?
每消耗一摩爾氧原子所消耗的無機磷的摩爾數(shù)稱為P/O比值。當?shù)孜锩摎湟訬AD+為受氫體時,P/O比值約為3;而當?shù)孜锩摎湟訤AD為受氫體時,P/O比值約為2。故NADH氧化呼吸鏈有三個生成ATP的偶聯(lián)部位,而琥珀酸氧化呼吸鏈只有兩個生成ATP的偶聯(lián)部位。?
六、氧化磷酸化的偶聯(lián)機制:?
目前公認的機制是1961年由Mitchell提出的化學滲透學說。這一學說認為氧化呼吸鏈存在于線粒體內(nèi)膜上,當氧化反應(yīng)進行時,H+通過氫泵作用(氧化還原袢)被排斥到線粒體內(nèi)膜外側(cè)(膜間腔),從而形成跨膜pH梯度和跨膜電位差。這種形式的能量,可以被存在于線粒體內(nèi)膜上的ATP合酶利用,生成高能磷酸基團,并與ADP結(jié)合而合成ATP。?
在電鏡下,ATP合酶分為三個部分,即頭部,柄部和基底部。但如用生化技術(shù)進行分離,則只能得到F0(基底部+部分柄部)和F1(頭部+部分柄部)兩部分。ATP合酶的中心存在質(zhì)子通道,當質(zhì)子通過這一通道進入線粒體基質(zhì)時,其能量被頭部的ATP合酶催化活性中心利用以合成ATP。?
七、氧化磷酸化的影響因素:?
1.ATP/ADP比值:ATP/ADP比值是調(diào)節(jié)氧化磷酸化速度的重要因素。ATP/ADP比值下降,可致氧化磷酸化速度加快;反之,當ATP/ADP比值升高時,則氧化磷酸化速度減慢。?
2.甲狀腺激素:甲狀腺激素可以激活細胞膜上的Na+,K+-ATP酶,使ATP水解增加,因而使ATP/ADP比值下降,氧化磷酸化速度加快。?
3.藥物和毒物:?
⑴呼吸鏈的抑制劑:能夠抑制呼吸鏈遞氫或遞電子過程的藥物或毒物稱為呼吸鏈的抑制劑。能夠抑制第一位點的有異戊巴比妥、粉蝶霉素A、魚藤酮等;能夠抑制第二位點的有抗霉素A和二巰基丙醇;能夠抑制第三位點的有CO、H2S和CN-、N3-。其中,CN-和N3-主要抑制氧化型Cytaa3-Fe3+,而CO和H2S主要抑制還原型Cytaa3-Fe2+。?
⑵解偶聯(lián)劑:不抑制呼吸鏈的遞氫或遞電子過程,但能使氧化產(chǎn)生的能量不能用于ADP的磷酸化的試劑稱為解偶聯(lián)劑。其機理是增大了線粒體內(nèi)膜對H+的通透性,使H+的跨膜梯度消除,從而使氧化過程釋放的能量不能用于ATP的合成反應(yīng)。主要的解偶聯(lián)劑有2,4-二硝基酚。?
⑶氧化磷酸化的抑制劑:對電子傳遞和ADP磷酸化均有抑制作用的藥物和毒物稱為氧化磷酸化的抑制劑,如寡霉素。?
八、高能磷酸鍵的類型:?
生物化學中常將水解時釋放的能量>20kJ/mol的磷酸鍵稱為高能磷酸鍵,主要有以下幾種類型:?
1.磷酸酐鍵:包括各種多磷酸核苷類化合物,如ADP,ATP等。?
2.混合酐鍵:由磷酸與羧酸脫水后形成的酐鍵,主要有1,3-二磷酸甘油酸等化合物。?
3.烯醇磷酸鍵:見于磷酸烯醇式丙酮酸中。?
4.磷酸胍鍵:見于磷酸肌酸中,是肌肉和腦組織中能量的貯存形式。磷酸肌酸中的高能磷酸鍵不能被直接利用,而必須先將其高能磷酸鍵轉(zhuǎn)移給ATP,才能供生理活動之需。這一反應(yīng)過程由肌酸磷酸激酶(CPK)催化完成。?
九、線粒體外NADH的穿梭:?
胞液中的3-磷酸甘油醛或乳酸脫氫,均可產(chǎn)生NADH。這些NADH可經(jīng)穿梭系統(tǒng)而進入線粒體氧化磷酸化,產(chǎn)生H2O和ATP。?
1.磷酸甘油穿梭系統(tǒng):這一系統(tǒng)以3-磷酸甘油和磷酸二羥丙酮為載體,在兩種不同的α-磷酸甘油脫氫酶的催化下,將胞液中NADH的氫原子帶入線粒體中,交給FAD,再沿琥珀酸氧化呼吸鏈進行氧化磷酸化。因此,如NADH通過此穿梭系統(tǒng)帶一對氫原子進入線粒體,則只得到2分子ATP。?
2.蘋果酸穿梭系統(tǒng):此系統(tǒng)以蘋果酸和天冬氨酸為載體,在蘋果酸脫氫酶和谷草轉(zhuǎn)氨酶的催化下。將胞液中NADH的氫原子帶入線粒體交給NAD+,再沿NADH氧化呼吸鏈進行氧化磷酸化。因此,經(jīng)此穿梭系統(tǒng)帶入一對氫原子可生成3分子ATP。
第八章?氨基酸代謝?
一、蛋白質(zhì)的營養(yǎng)作用:?
1.蛋白質(zhì)的生理功能:主要有:①是構(gòu)成組織細胞的重要成分;②參與組織細胞的更新和修補;③參與物質(zhì)代謝及生理功能的調(diào)控;④氧化供能;⑤其他功能:如轉(zhuǎn)運、凝血、免疫、記憶、識別等。?
2.氮平衡:體內(nèi)蛋白質(zhì)的合成與分解處于動態(tài)平衡中,故每日氮的攝入量與排出量也維持著動態(tài)平衡,這種動態(tài)平衡就稱為氮平衡。氮平衡有以下幾種情況:?
⑴氮總平衡:每日攝入氮量與排出氮量大致相等,表示體內(nèi)蛋白質(zhì)的合成量與分解量大致相等,稱為氮總平衡。此種情況見于正常成人。?
⑵氮正平衡:每日攝入氮量大于排出氮量,表明體內(nèi)蛋白質(zhì)的合成量大于分解量,稱為氮正平衡。此種情況見于兒童、孕婦、病后恢復期。?
⑶氮負平衡:每日攝入氮量小于排出氮量,表明體內(nèi)蛋白質(zhì)的合成量小于分解量,稱為氮負平衡。此種情況見于消耗性疾病患者(結(jié)核、腫瘤),饑餓者。?
3.必需氨基酸與非必需氨基酸:體內(nèi)不能合成,必須由食物蛋白質(zhì)供給的氨基酸稱為必需氨基酸。反之,體內(nèi)能夠自行合成,不必由食物供給的氨基酸就稱為非必需氨基酸。?
必需氨基酸一共有八種:賴氨酸(Lys)、色氨酸(Trp)、苯丙氨酸(Phe)、蛋氨酸(Met)、蘇氨酸(Thr)、亮氨酸(Leu)、異亮氨酸(Ile)、纈氨酸(Val)。酪氨酸和半胱氨酸必需以必需氨基酸為原料來合成,故被稱為半必需氨基酸。?
4.蛋白質(zhì)的營養(yǎng)價值及互補作用:蛋白質(zhì)營養(yǎng)價值高低的決定因素有:①?必需氨基酸的含量;②?必需氨基酸的種類;③?必需氨基酸的比例,即具有與人體需求相符的氨基酸組成。將幾種營養(yǎng)價值較低的食物蛋白質(zhì)混合后食用,以提高其營養(yǎng)價值的作用稱為食物蛋白質(zhì)的互補作用。?
二、蛋白質(zhì)的消化、吸收與腐敗?
1.蛋白質(zhì)的消化:胃蛋白酶水解食物蛋白質(zhì)為多肽,再在小腸中完全水解為氨基酸。?
2.氨基酸的吸收:主要在小腸進行,是一種主動轉(zhuǎn)運過程,需由特殊載體攜帶。除此之外,也可經(jīng)γ-谷氨酰循環(huán)進行。?
3.蛋白質(zhì)在腸中的腐?。褐饕诖竽c中進行,是細菌對蛋白質(zhì)及其消化產(chǎn)物的分解作用,可產(chǎn)生有毒物質(zhì)。?
三、氨基酸的脫氨基作用:?
氨基酸主要通過三種方式脫氨基,即氧化脫氨基,聯(lián)合脫氨基和非氧化脫氨基。?
1.氧化脫氨基:反應(yīng)過程包括脫氫和水解兩步,反應(yīng)主要由L-氨基酸氧化酶和谷氨酸脫氫酶所催化。L-氨基酸氧化酶是一種需氧脫氫酶,該酶在人體內(nèi)作用不大。谷氨酸脫氫酶是一種不需氧脫氫酶,以NAD+或NADP+為輔酶。該酶作用較大,屬于變構(gòu)酶,其活性受ATP,GTP的抑制,受ADP,GDP的激活。?
2.轉(zhuǎn)氨基作用:由轉(zhuǎn)氨酶催化,將α-氨基酸的氨基轉(zhuǎn)移到α-酮酸酮基的位置上,生成相應(yīng)的α-氨基酸,而原來的α-氨基酸則轉(zhuǎn)變?yōu)橄鄳?yīng)的α-酮酸。轉(zhuǎn)氨酶以磷酸吡哆醛(胺)為輔酶。轉(zhuǎn)氨基作用可以在各種氨基酸與α-酮酸之間普遍進行。除Gly,Lys,Thr,Pro外,均可參加轉(zhuǎn)氨基作用。較為重要的轉(zhuǎn)氨酶有:?
⑴?丙氨酸氨基轉(zhuǎn)移酶(ALT),又稱為谷丙轉(zhuǎn)氨酶(GPT)。催化丙氨酸與α-酮戊二酸之間的氨基移換反應(yīng),為可逆反應(yīng)。該酶在肝臟中活性較高,在肝臟疾病時,可引起血清中ALT活性明顯升高。?
⑵?天冬氨酸氨基轉(zhuǎn)移酶(AST),又稱為谷草轉(zhuǎn)氨酶(GOT)。催化天冬氨酸與α-酮戊二酸之間的氨基移換反應(yīng),為可逆反應(yīng)。該酶在心肌中活性較高,故在心肌疾患時,血清中AST活性明顯升高。?
3.聯(lián)合脫氨基作用:轉(zhuǎn)氨基作用與氧化脫氨基作用聯(lián)合進行,從而使氨基酸脫去氨基并氧化為α-酮酸的過程,稱為聯(lián)合脫氨基作用。可在大多數(shù)組織細胞中進行,是體內(nèi)主要的脫氨基的方式。?
4.嘌呤核苷酸循環(huán)(PNC):這是存在于骨骼肌和心肌中的一種特殊的聯(lián)合脫氨基作用方式。在骨骼肌和心肌中,腺苷酸脫氨酶的活性較高,該酶可催化AMP脫氨基,此反應(yīng)與轉(zhuǎn)氨基反應(yīng)相聯(lián)系,即構(gòu)成嘌呤核苷酸循環(huán)的脫氨基作用。?
四、α-酮酸的代謝:?
1.再氨基化為氨基酸。?
2.轉(zhuǎn)變?yōu)樘腔蛑耗承┌被崦摪被笊商钱惿緩降闹虚g代謝物,故可經(jīng)糖異生途徑生成葡萄糖,這些氨基酸稱為生糖氨基酸。個別氨基酸如Leu,Lys,經(jīng)代謝后只能生成乙酰CoA或乙酰乙酰CoA,再轉(zhuǎn)變?yōu)橹蛲w,故稱為生酮氨基酸。而Phe,Tyr,Ile,Thr,Trp經(jīng)分解后的產(chǎn)物一部分可生成葡萄糖,另一部分則生成乙酰CoA,故稱為生糖兼生酮氨基酸。?
3.氧化供能:進入三羧酸循環(huán)徹底氧化分解供能。?
五、氨的代謝:?
1.血氨的來源與去路:?
⑴血氨的來源:①由腸道吸收;②氨基酸脫氨基;③氨基酸的酰胺基水解;④其他含氮物的分解。?
⑵血氨的去路:①在肝臟轉(zhuǎn)變?yōu)槟蛩兀虎诤铣砂被?;③合成其他含氮物;④合成天冬酰胺和谷氨酰胺;⑤直接排出?
2.氨在血中的轉(zhuǎn)運:氨在血液循環(huán)中的轉(zhuǎn)運,需以無毒的形式進行,如生成丙氨酸或谷氨酰胺等,將氨轉(zhuǎn)運至肝臟或腎臟進行代謝。?
⑴丙氨酸-葡萄糖循環(huán):肌肉中的氨基酸將氨基轉(zhuǎn)給丙酮酸生成丙氨酸,后者經(jīng)血液循環(huán)轉(zhuǎn)運至肝臟再脫氨基,生成的丙酮酸經(jīng)糖異生轉(zhuǎn)變?yōu)槠咸烟呛笤俳?jīng)血液循環(huán)轉(zhuǎn)運至肌肉重新分解產(chǎn)生丙酮酸,這一循環(huán)過程就稱為丙氨酸-葡萄糖循環(huán)。?
⑵谷氨酰胺的運氨作用:肝外組織,如腦、骨骼肌、心肌在谷氨酰胺合成酶的催化下,合成谷氨酰胺,以谷氨酰胺的形式將氨基經(jīng)血液循環(huán)帶到肝臟,再由谷氨酰胺酶將其分解,產(chǎn)生的氨即可用于合成尿素。因此,谷氨酰胺對氨具有運輸、貯存和解毒作用。?
3.鳥氨酸循環(huán)與尿素的合成:體內(nèi)氨的主要代謝去路是用于合成尿素。合成尿素的主要器官是肝臟,但在腎及腦中也可少量合成。尿素合成是經(jīng)鳥氨酸循環(huán)的反應(yīng)過程來完成,催化這些反應(yīng)的酶存在于胞液和線粒體中。其主要反應(yīng)過程如下:NH3+CO2+2ATP?→氨基甲酰磷酸→胍氨酸→精氨酸代琥珀酸→精氨酸→尿素+鳥氨酸。?
尿素合成的特點:①合成主要在肝臟的線粒體和胞液中進行;②合成一分子尿素需消耗四分子ATP;③精氨酸代琥珀酸合成酶是尿素合成的關(guān)鍵酶;④尿素分子中的兩個氮原子,一個來源于NH3,一個來源于天冬氨酸。?
六、氨基酸的脫羧基作用:?
由氨基酸脫羧酶催化,輔酶為磷酸吡哆醛,產(chǎn)物為CO2和胺。?
1.γ-氨基丁酸的生成:γ-氨基丁酸(GABA)是一種重要的神經(jīng)遞質(zhì),由L-谷氨酸脫羧而產(chǎn)生。反應(yīng)由L-谷氨酸脫羧酶催化,在腦及腎中活性很高。?
2.5-羥色胺的生成:5-羥色胺(5-HT)也是一種重要的神經(jīng)遞質(zhì),且具有強烈的縮血管作用,其合成原料是色氨酸。合成過程為:色氨酸→5羥色氨酸→5-羥色胺。?
3.組胺的生成:組胺由組氨酸脫羧產(chǎn)生,具有促進平滑肌收縮,促進胃酸分泌和強烈的舒血管作用。?
4.多胺的生成:精脒和精胺均屬于多胺,它們與細胞生長繁殖的調(diào)節(jié)有關(guān)。合成的原料為鳥氨酸,關(guān)鍵酶是鳥氨酸脫羧酶。?
七、一碳單位的代謝:?
一碳單位是指只含一個碳原子的有機基團,這些基團通常由其載體攜帶參加代謝反應(yīng)。常見的一碳單位有甲基(-CH3)、亞甲基或甲烯基(-CH2-)、次甲基或甲炔基(=CH-)、甲?;?CHO)、亞氨甲基(-CH=NH)、羥甲基(-CH2OH)等。?
一碳單位通常由其載體攜帶,常見的載體有四氫葉酸(FH4)和S-腺苷同型半胱氨酸,有時也可為VitB12。?
常見的一碳單位的四氫葉酸衍生物有:①N10-甲酰四氫葉酸(N10-CHO?FH4);②N5-亞氨甲基四氫葉酸(N5-CH=NH?FH4);③N5,N10-亞甲基四氫葉酸?(N5,N10-CH2-FH4);④N5,N10-次甲基四氫葉酸?(N5,N10=CH-FH4);⑤N5-甲基四氫葉酸(N5-CH3?FH4)。?
蘇氨酸、絲氨酸、甘氨酸和色氨酸代謝降解后可生成N10-甲酰四氫葉酸,后者可用于嘌呤C2原子的合成;蘇氨酸、絲氨酸、甘氨酸和組氨酸代謝降解后可生成N5,N10-次甲基四氫葉酸,后者可用于嘌呤C8原子的合成;絲氨酸代謝降解后可生成N5,N10-亞甲基四氫葉酸,后者可用于胸腺嘧啶甲基的合成。?
八、S-腺苷蛋氨酸循環(huán):?
蛋氨酸是體內(nèi)合成許多重要化合物,如腎上腺素、膽堿、肌酸和核酸等的甲基供體。其活性形式為S-腺苷蛋氨酸(SAM)。SAM也是一種一碳單位衍生物,其載體可認為是S-腺苷同型半胱氨酸,攜帶的一碳單位是甲基。?
從蛋氨酸形成的S-腺苷蛋氨酸,在提供甲基以后轉(zhuǎn)變?yōu)橥桶腚装彼?,然后再反方向重新合成蛋氨酸,這一循環(huán)反應(yīng)過程稱為S-腺苷蛋氨酸循環(huán)或活性甲基循環(huán)。?
九、芳香族氨基酸的代謝:?
在神經(jīng)組織細胞中的主要代謝過程為:苯丙氨酸→酪氨酸→多巴→多巴胺→去甲腎上腺素→腎上腺素。多巴胺、去甲腎上腺素和腎上腺素統(tǒng)稱兒茶酚胺。在黑色素細胞中,多巴可轉(zhuǎn)變?yōu)楹谏亍1奖彼崃u化酶遺傳性缺陷可致苯丙酮酸尿癥,酪氨酸酶遺傳性缺陷可致白化病。